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1 Motivation

My fascination with stellations of polyhedra began with two classic works: Wenninger’s
Polyhedron Models [1] and Coxeter, DuVal, Flather, and Petrie’s The Fifty-Nine Icosahedra
[2]. I had the pleasure of an active correspondence with Magnus Wenninger; I would often
send him sets of notes I had written about polyhedra and he would offer commentary. His
passing in February 2017 inspired me to unearth these notes and organize them a bit more
formally. This paper is based on a set of hand-written notes dated September 1994.

2 Introduction

What is a stellation? This question is perhaps as difficult to answer as “What is a polyhe-
dron?” The most usual definition of a stellation of a polyhedron is some symmetric collection
of cells which space is divided into by the facial planes of the polyhedron. Miller’s rules for
defining stellations are referenced in The Fifty-Nine Icosahedra. More recently, Hudson and
Kingston offered their perspective in the Intelligencer [3].

For our purposes, a precise definition is not required. Rather, our aim is to suggest a possible
generalization of the current notion of “stellation.”

We illustrate with a specific example, the uniform polyhedron sometimes called the stellated
truncated hexahedron, shown in Figure 1. This nomenclature is unfortunate, since this poly-
hedron is actually not a stellation of any truncated hexahedron, since the eight facial planes
containing the triangular faces bound an octahedron which lies entirely in the interior of the
cube formed by the facial planes of the six octagrams. This is clear given how deeply the
pink triangular faces cut into the interior of the cube.

Yet this polyhedron has six faces lying in the facial planes of a cube and eight faces lying
in the facial planes of an octahedron. Thus, we call this polyhedron a stellation of two
cores, since it is not possible to create as a stellation of a single polyhedron. Of course there
may be multiple cores – and in general, we might consider any collection of planes in space.
But because of the high symmetry of uniform polyhedra, we will confine our attention to
stellations of multiple cores, and in this paper, to just two cores – a cube and an octahedron.



Figure 1: Stellated truncated hexahedron.

It is instructive to describe in some detail an example in two dimensions; the ideas extend
naturally to three dimensions. First look at Figure 2(d), where a square and the lines
containing the sides (analogues of facial planes in three dimensions) are drawn together with
the dual square and the lines containing its sides (shown in red). In three dimensions, the
dual of the cube will be the octahedron, so we say “dual square” here to distinguish the
squares. We assign the dual square a scale factor σ = 1.

Now imagine shrinking the dual square slightly, together with the lines containing its sides.
The plane will topologically be divided into the same number and type (that is, finite or
infinite) of cells, although some may now be shaped differently. But when the dual square
shrinks by a value of σ = 1/

√
2 (see Figure 2(c)), some of the cells degenerate to points. We

call these values where of σ where the topology changes transitional values of σ.

As σ continues to shrink, new cells are now formed (see Figure 2(b)). The topology of the
cells does not change until the limiting case σ = 0, illustrated in Figure 2(a).

As σ grows larger than one, the topology of the cells remains the same until the transitional
value σ =

√
2, as in Figure 2(e). (Note that this looks like a rotated and enlarged version of

the σ = 1/
√

2 case, but in three dimensions, this will not be case as the dual of the cube is
an octahedron.) As σ gets larger (see Figure 2(f)), the topology remains the same until the
limiting case σ = ∞ (Figure 2(g)), where lines containing opposite sides of the square are
now coincident.

Note that only one of these diagrams (Figure 2(d)) represents a stellation of a single polygon,
namely a convex octagon. The other six cases cannot be so described. But interesting
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Figure 2: Topologically distinct stellations of two cores.



polygons, such as the one shaded in Figure 2(h), are generated even though they cannot be
considered as stellations of a single polygon.

3 Jumping to Three Dimensions

We now consider a three-dimensional analogue of the previous discussion. We begin with a
cube C and its dual octahedron O, where we define the dual in such a way that the edges
of C and O perpendicularly bisect each other. How do the facial planes of these polyhedra
divide space?

First consider how the facial planes of the cube divide space. First, we have the cube C0.
Next, we have the the six prismatic infinite regions over the faces, which we collectively
denote as C1. The twelve infinite regions over the edges sharing unbounded faces with the
C1 are denoted by C2. Finally, we denote by C3 the eight octants on top of the C2 which
meet the cube at its vertices. This gives the cell adjacency diagram shown in Figure 3.
We note that although infinite regions are typically not included in cell adjacency diagrams
(which we also refer to as stellation diagrams), consideration of Figure 2(b), for example,
shows that two infinite regions – one from the square, and one from the dual square – may
intersect in a bounded region. So we must consider the complete decomposition of space
by the facial planes. For simplicity, we refer to the cell C1, for example, even though C1 is
actually a collection of cells.

C0

C1

C2

C3

Figure 3: Infinite stellation diagram for the cube.

We now consider how the facial planes of the octahedron divide space. We have O0, the
octahedron itself. Above the triangular faces are the eight tetrahedra O1 of the stella octan-
gula. The infinite regions are most easily described by Figure 4, which shows the eight facial
planes of O dividing up two spheres containing O0 at its center. The point at the center
of each image is a vertex of the stella octangula; the sphere used on the right is twice the
radius of the one on the left. This gives two different perspectives from which to understand
the geometry of the remaining cells.

There are twelve regions O2 with rhombic cross-sections above the edges of the octahedron
(and sharing two triangular faces with the stella octangula). On top of these, with trape-
zoidal cross-sections, are the 24 cells O3. There are two types of infinite cells on top of the



O3 : the six square pyramidal regions O4 (opposite the vertices of the octahedron) and the
eight triangular pyramidal regions O5 (opposite the vertices of the stella octangula). The
corresponding infinite stellation diagram is shown in Figure 5.

; ;

Figure 4: Decomposition of space by octahedral facial planes.
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Figure 5: Infinite stellation diagram for the octahedron.



To continue the analysis as illustrated in two dimensions in Figure 2, we consider the facial
planes of the cube C0, and the facial planes of the scaled σO0, where 0 ≤ σ ≤ ∞. For each
region Ci ∩ σOj, where 0 ≤ i ≤ 3 and 0 ≤ j ≤ 5, we wish to determine if the region is:

1. empty;

2. degenerate – that is, having dimension less than three;

3. bounded and non-degenerate – that is, enclosing a nonzero finite volume; for simplicity,
we will refer to such regions as finite;

4. infinite – that is, enclosing an infinite volume.

Essentially, we need to determine the finite cells for various σ, since stellations of these two
cores will necessarily include such cells.

Some abbreviated notation is convenient. For a given σ, we label the cell Ci ∩ σOj as ij.
What we will eventually accomplish is a classification of all uniform polyhedra with 14 facial
planes (six hexahedral and eight octahedral) as stellations of two cores. For example, when
σ = (

√
2−1)/2, the stellated truncated hexahedron is in fact a stellation of C and σO, with

the outwardly visible cells being 04 and 15.

4 Transitional Values of σ

First, it is necessary to find the transitional values of σ. Certainly σ = 0 and σ = ∞ are
always transitional values regardless of the two cores, since the topology clearly changes –
for one of the cores, parallel opposite planes are now coincident (see the two-dimensional
analogues in Figure 2(a),(g)).

We begin our analysis with σ = 0, and then imagine the core octahedron slowly expanding
until previously nondegenerate cells become degenerate. As the octahedron expands, note
that the cell 04 is finite, but becomes degenerate when the vertices of the octahedron reach
the centers of the cube faces. It is not hard to show that this occurs at the transitional value
σ = 1/2 – just observe that the height of O must be twice the height of C because of the
way the edges of the octahedron are bisected by the edges of the cube. See Figure 6, where
we are looking at the black cube face on; the red diamond is a cross-section of O, the blue
diamond is a cross-section of 3

2
O, and the small orange diamond is a cross-section of 1

2
O.

As the octahedron continues to expand, a new topology is created. It remains unchanged
until the edges of the octahedron hit the edges of the cube and previously finite cells become
degenerate – but this is just the transitional value σ = 1, since this occurs precisely as the
octahedron becomes the exact dual of the cube.



The next transitional value of σ occurs when the octahedron expands to the point when the
vertices of the cube are centers of the octahedral faces. This must occur when σ = 3/2; just
consider the fact that the barycenter of a triangle divides medians in the ratio 2 : 1. The
dashed blue line in Figure 6 is the projection of such a median.

Once the octahedron expands beyond the cube, the topology remains the same until σ =∞.

Figure 6: Cross-section of cube with scaled octahedra.

5 Cell Status

We now wish to determine the status of the cells ij for each possible value of σ. For a given
σ, some of the cells will be finite, and it is these which we wish to consider when creating a
cell diagram for stellations.

We will consider i = 0, and leave the other cases to the reader as the analysis is similar.
Beginning with 00, since the centers of C0 and O0 are coincident, we see that 00 is finite
when 0 < σ <∞. When σ = 0 or σ =∞, 00 degenerates to a single point.

When σ = 0, the cell 01 degenerates to a point. When σ = 3
2
, C0 is inscribed in O0, and

hence 01 also degenerates to a point. Between these transitional values, 01 is finite, and is
empty when σ > 3

2
.

We see that 02 is degenerate when when σ = 0. When σ = 1, O2 meets C0 at the midpoint
of an edge of C0, and hence is degenerate. Thus, we see that 02 is finite when 0 < σ < 1,
and empty when σ > 1.

The cell 03 is degenerate when σ = 0. Note that the stella octangula is inscribed in C0 when
σ = 1

2
, and hence 03 is degenerate in this case. So 02 is finite between these two transitional

values, and empty when σ > 1
2
.



When σ = 0, the cell 04 is finite; in fact, a typical 04 region is a half-octahedron whose
vertices are the center of C0 and the four midpoints of the edges of a face of C0. Again, as
the stella octangula is inscribed in the cube when σ = 1

2
, 04 is degenerate in this case. Thus,

04 is finite when 0 < σ < 1
2
, and empty when σ > 1

2
.

Finally, we consider the cell 05. When σ = 0, these regions are those remaining after the six
half-octahedra (see the previous case) are removed from C0. The analysis remains the same
as in this case, so that 05 is finite when 0 ≤ σ < 1

2
, degenerate when σ = 1

2
, and empty when

σ > 1
2
.

These data, and data for all the other cells, are given in Table 1. Columns are headed either
by transitional values of σ or ranges for σ. Empty cells are represented by an empty entry,
degenerate cells by “•,” finite cells by “bnd” (for bounded and non-degenerate), and infinite
cells by “∞.”

6 Cell Adjacency Diagrams

How can we use this information to create cell adjacency diagrams? We illustrate with
an example, which although simple, illustrates the general case. Consider the case σ = 1,
illustrated in Figure 7, where cell 00 is the cuboctahedron. Two of the square pyramidal
cells 10 are shown, slightly shifted for the illustration. What is happening is that the cell
O0 is being sliced by the facial planes of C0. These facial planes divide O0 into two types of
regions: those parts of O0 belonging to C0 and those parts belonging to C1. Of course C1

is on top of C0, and hence the cells in C1 ∩O0 must be on top of C0 ∩O0.

We generalize to the following heuristics for cell adjacency.

1. Cell ki lies on top of cell ji only if Ck lies on top of Cj;

2. Cell ik lies on top of cell ij only if Ok lies on top of Oj;

3. When i 6= k and j 6= l, cells ij and kl cannot be adjacent.

Next, we create a “master diagram,” shown in Figure 8. The heuristics imply that this
diagram includes all possible adjacencies between cells. All that is necessary is to determine
which of these cells are finite for a given σ, and then read off the adjacencies from the
diagram.

We now investigate the value of σ which generates Figure 1. We assume that the edge length
of C0 is 2. It is easy to see that the vertices of Figure 1 are the vertices of a small rhom-
bicuboctahedron, whose vertices are (1, 1, 1+

√
2) together will all possible permutations and

changes of signs in the coordinates. A straightforward calculation shows that the midpoints



Cell 0 (0, 1
2
) 1

2
(1
2
, 1) 1 (1, 3

2
) 3

2
(3
2
,∞) ∞

00 • bnd bnd bnd bnd bnd bnd bnd •
01 • bnd bnd bnd bnd bnd •
02 • bnd bnd bnd •
03 • bnd •
04 bnd bnd •
05 bnd bnd •

10 • bnd bnd bnd bnd bnd •
11 • bnd bnd bnd bnd bnd •
12 • bnd bnd bnd bnd bnd bnd bnd •
13 • bnd bnd bnd bnd bnd bnd bnd •
14 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ •
15 bnd bnd •

20 • bnd bnd bnd •
21 • bnd bnd bnd bnd bnd •
22 • ∞ ∞ ∞ ∞ ∞ ∞ ∞ •
23 • ∞ ∞ ∞ ∞ ∞ ∞ ∞ •
24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ •
25 ∞ ∞ •

30 • bnd bnd

31 • bnd bnd bnd bnd bnd bnd

32 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
33 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
34 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
35 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 1: Cell status of the cells ij, 0 ≤ i ≤ 3, 0 ≤ j ≤ 5.



Figure 7: Cell 00 and some of the cells 10.
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Figure 8: Master stellation diagram.



of the triangular faces of Figure 1 are

(√
2− 1

3
,

√
2− 1

3
,

√
2− 1

3

)
, along with all possible

changes of sign, so that the distance between opposite triangular faces is 2(
√

2 − 1)/
√

3.
But this means that the distance between opposite faces of the core octahedron is also
2(
√

2− 1)/
√

3.

Now if the edge length of C0 is 2, then the vertices of the dual octahedron are (0, 0, 2), along
with all possible permutations and changes of sign. A straightforward calculation shows that
the distance between opposite faces on the dual octahedron is 4/

√
3. Thus we have

σ =
2(
√

2− 1)√
3

·
√

3

4
=

√
2− 1

2
≈ 0.207.

We may use this value of σ along with Table 1 and Figure 8 to generate the stellation diagram
in Figure 9. Note that we only include those cells from Figure 8 which are listed as finite
(“bnd”) in the second column of Table 1 since 0 < 0.207 < 1/2.

00
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03

04

05

12

13

15

Figure 9: Stellation diagram for σ =

√
2− 1

2
.

The outwardly visible cells of the stellated truncated hexahedron (see Figure 1) are the cells
04 and 15. We remark that for the purposes of this discussion, we need go no further than this.
We will simply assume that the stellated truncated hexahedron is solid in that any interior
cells not visible are included in the polyhedron. Such stellations are called fully-supported
stellations.

Figure 9 may be a relatively simple diagram, but it is possible for these diagrams to become
enormously complex when the core polyhedra have more faces.



7 Cuboctahedral Uniform Polyhedra

What other uniform polyhedra may be similarly described as stellations of the two cores C0

and O0? We might call such polyhedra cuboctahedral uniform polyhedra. Trivially, we have
the truncated octahedron, cuboctahedron, and truncated cube, corresponding to σ taking

on the values
3

4
, 1, and

√
2 + 1

2
, respectively. Of course each of these Archimedean solids

corresponds to the cell 00.

The only other nontrivial example is the cubohemioctahedron, where σ = 0, illustrated in
Figure 10. Recall that “hemi” means that the four hexagons pass through the center of the
polyhedron. We still consider this a cuboctahedral uniform polyhedron, as there are eight
facial planes bounding 0O, coincident in pairs.

We summarize these five examples in Table 2. As sometimes names for polyhedra may
vary (for example, “great rhombicuboctahedron” and “truncated cuboctahedron” refer to
the same polyhedron), the polyhedra are indexed by their Wythoff symbols, which are un-
ambiguous. (Although not necessary here, more information about Wythoff symbols may
be found in Coxeter’s Regular Polytopes [4].)

Figure 10: Cubohemioctahedron.

8 Final Remarks

There are 25 other uniform polyhedra which may be described as stellations of two cores.
Three are somewhat simpler that those discussed here, while the others are a bit more
complex – especially those where one core is the rhombic triacontahedron.



Wythoff symbol σ Visible cells Name

4
3

4 | 3 0 04 Cubohemioctahedron

2 3 | 4
3

√
2− 1

2
04, 15 Stellated truncated hexahedron

2 4 | 3
3

4
00 Truncated octahedron

2 | 3 4 1 00 Cuboctahedron

2 3 | 4

√
2 + 1

2
00 Truncated cube

Table 2: Cuboctahedral uniform polyhedra.

My notes of 1994 include similar considerations for those uniform polyhedra which may be
considered as stellations of two dodecahedral cores, and those whose cores are an icosahedron
and its dual dodecahedron. While such uniform polyhedra are rather more interesting than
the cuboctahedral ones, I thought it preferable to illustrate the general idea of stellations of
multiple cores with a fairly simple (though nontrivial) example.

Vladimir Bulatov wrote an excellent applet [5]1 which allows the user to specify stellations
with multiple cores. It is invaluable for anyone interested in pursuing these ideas further.
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1The website for the applet referenced in this paper is out of date; the applet is currently accessible via
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