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1 | The oz-.Icosahedron

It is well-known that an icosahedron or a dodecahedron may be inscribed in
a cube so that six of its edges lie within the faces of the cube. In the case
that the edge of the circumscribing cube has length 2 (as will be the case
throughout this discussion), it may be shown that the length of an inscribed
icosahedral edge is 27~ (where 7 = (1 + v/5)/2), while that of an inscribed

- dodecahedral edge is 2772, (A method for calculating the lengths of these
“edges is given below.)

. In this paper, we wish to consider variations of such inscriptions. Let us _
begin with the icosahedron. Rather than create a regular icosahedron, we
create the twelve vertices of an irregular icosahedron by insisting that its six

* inscribed edges have length 2c, where 0 < a < 1, rather than 271 (see

: ”Flgure 1). Using a Cartesian coordinate system based on the circumscribed
cube, coordinates for these vertices may be determined (as in Figure 1).
Note that there are eight octahedral equilateral triangular faces and twelve
~ isosceles triangular faces, yielding an icosahedron with tetrahedral symmetry
~ (including reflections). We call such an icosahedron an a~icosahedron. Note
_that the case o = 0 yields an octahedron (the twelve isosceles triangles
degenerate into the edges of the octahedron), while the case a = 1 yields
a cuboctahedron (the twelve isosceles triangles are in fact right triangles
coplanar in pairs, giving the square faces of the cuboctahedron).

The coordinates of any of the isosceles triangles (such as in Figure 2) may
be used to calculate the following data. The base and sides of the isosceles
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triangles are given by
b=2a, a= v2(a? —a+1), (1)

the a;ngles of this triangle are determined by the relationships

cosB’=-——2~1—~_;a—~.—,' CoSA = ——er : 2)
of—a+1 - 4/2(e?-a+1)

-and the radius of its circumcircle is

o —a+1
T 3
d Vvoi — 20+ 2 (3)

Setting b = a in (1) so that the twelve isosceles triangles are in fact equilateral
‘triangles ylelds a = 771, so that a regular icosahedron of edge length 27~ is
obtamed

i ; 2 - The Dual Dodecahedron

‘We now wish to create the duals of the family of icosahedra just described.
- We will employ the usual method of polar reciprocity (also known as inversion
about a sphere) using a sphere of radius p = 1. When all of the faces of a
polyhedron are regular polygons, it is a simple matter to invert the centers
of its faces to obtain the vertices of its dual. For a face which is not a
regular polygon, the point to be inverted is that point on the face (or its
facial plane) which, when joined to the origin, yields a segment orthogonal
to the facial plane of that face. Since the vertices of an a-icosahedron lie on
a sphere, the analogous point for an isosceles triangular face is the center of
its circumcircle, which is already known (see (3) and Figure 3). Of course,
- the analogous point for an equilateral triangular face is its center.

Performing the inversion yields the following twenty vertices for the dual
dodecahedron: the point (1/(a + 1),1/(e + 1),1/(cx + 1)) along with the
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other seven vertices obtained by taking all possible changes of sign of its
terms (such as (1/(a + 1), -1/(a + 1), —~1/(a + 1)), along with the point
(1,a~1,0) and the other eleven vertices obtained by taking all possible even
~permutations and changes of sign of its terms (e.g., (0,—1,1 — «)). Shown
in Figure 3(a) are the five icosahedral faces surrounding (1,0, —) and the
corresponding centers of the circumcircles of these faces, while Figure 3(b)
shows the inverses of these centers as the vertices of a pentagonal face of the
- dual dodecahedron. These particular vertices have coordinates

A = (1-a,0,-1),
o f L T _ 1 )
T \a+1" a+l a+1/’
C'= (1, a 1,0),
=( aO),
7= (53 1) @
a+1’ a+1’ a+1/" '

- With these coordinates, we find that the lengths of the edges of the pentagon
are
vat+a?+1

(OD)=30-0), WB)=[BC)= (DB =4 = VT

(5)
- We may also find that the angles 8, ¢, and ¢ as depicted in Figure 3(b) are
determined by the relationships

—o? A — 2
cosf = ————. COSP = ), COSY =1 —
Vvort+o?+1 o?+a+1l ot +o?41

- ‘ (6)
Note that with @ = 7!, we find that all edges have length 272, and the
angles are given by

1 0
0-—ga=¢v—-arccos(—-§—7-_-)—-108.



'3 f-Dodecahedra

‘Recall that this short discourse began with the discussion of variations of a
regular icosahedron inscribed in a cube. We now wish to consider the analo-
gous dodecahedral variations. So rather than create a regular dodecahedron,
we create twelve of the twenty vertices of an irregular dodecahedron by in-
sisting that the six edges which lie on the faces of a circumscribing cube have
length 23, where 0 < g < 1, rather than length 272 (see Figure 4). Each
~inscribed edge then determines two faces, as illustrated in Figure 4; for ex-
ample, edge C'D is incident to two faces that lie in the planes determined by
points C, D and A, and points C, D and F'. These twelve faces in turn gen-
erate the remaining eight vertices of the dodecahedron (such as B, E and G)
which, it is apparent, comprise the vertices of a small cube within the interior
of the cube circumscribing the dodecahedron. We call such a dodecahedron
a f~dodecahedron. Note that such dodecahedra possess the symmetry of a
regular tetrahedron (including reflections). The case # = 0 yields a rhombic

~dodecahedron (edges such as CD degenerate to a point), while the case § = 1

yields a cube (the pentagonal faces transform into rectangular half-faces of
the original cube).

Now coordinates for the twelve vertices (such as A, C and D) inscribed in the
“larger” cube are found as they were for the icosahedron. To find coordinates
for the eight vertices of the “smaller” cube (mentioned above), we proceed as
- follows. Symmetry considerations require that the smaller cube is oriented in
- the same fashion as the larger so that we may imagine the smaller cube as a,
copy of the larger, although scaled by a factor of o, where 0 < ¢ < 1. Thus,
G would have coordinates of the form (o, 0, o) since the corresponding corner
of the larger cube, H, has coordinates (1,1,1). Knowing coordinates for C,
D and F, it is a straightforward exercise in analytic geometry to determine
- that value of o for which C, D, F' and G all lie in the same plane; the result
- §o obtained is
: 1
(7)

2- 8

g =

Note that as 3 varies between 0 and 1, o varies between 1/2 and 1; the reader
is invited to give a geometrical argument explaining this phenomenon



We are now ready to describe the dodecahedral pentagons, typica,lly shown
in Figure 5. The vertices of this pentagon are given by

A= (ﬂ:oa_l):
, 1 -1 -1
B= (55 )
C = (17_}670)7
D E (Lﬁ:o):
1 1 -1
£ = (25 1) ®)

Upon comparison, it is evident that replacing 8 with 1 — « yields precisely
the vertices of the pentagon in Figure 3(b) (see (4)). This is not surprising
when one considers the relationship between those a-icosahedral edges lying
in the faces of the cube and the corresponding dual dodecahedral edges (see
- Figure 6, which is modelled on data from Figure 3). The six edges that lie in
the faces of the cube are sufficient to determine the dual dodecahedron, and
the specification of six such edges completely determines a 3-dodecahedron.
Thus, we see that a (1 — a)-dodecahedron is dual to an o-icosahedron, or
equivalently, a 3-dodecahedron is dual to a (1 — f)-icosahedron.

We remark that the edges of an a-icosahedron intersect those of its dual
* only when « = 77} that is, the icosahedron is regular. In general, the only
edges of an a~icosahedron which intersect the corresponding edges of its dual
(1 — @)-dodecahedron are those which lie in the faces of the circumscribing
cube. (Of course, one can force the other 24 pairs of edges to intersect by
modifying the radius of the sphere of inversion, but then the other six pairs
fail to intersect.) Thus, in general, there seems to be no straightforward
- generalization of the rhombic triacontahedron.

4 Stellations of #-Dodecahedra

- A number of very interesting polyhedra arise from stellating A-dodecahedra.
Not only are many aesthetically appealing, but several are chiral, and the



diversity of forms exceeds that of the regular icosahedral stellations. The
stellations of fB-dodecahedra fall into two classes, with the regular dodeca-
~ hedron (8 = 772) forming a “boundary”. As a result the parameter ranges

- 0< B < 72%and 7% < B < 1 create sets of topologically distinct stel- |
lations. We discuss each in turn, and then make some remarks concerning
their relationship to the regular dodecahedral stellations. We shall presume
- on the part of the reader a familiarity with the basic theory of the stellation

o process. For a good introduction to the stellatlon process, see Wenninger’s
Polyhedron Models.

4.1 The parameter range 72 < g8 < 1.

Since the faces of a f-dodecahedron are congruent pentagons, only one stella-
tion diagram is necessary, which is given in Figure 7 (in this case, = 0.55).
- For the reader interested in creating graphical images of such dodecahedra,
Cartesian coordinates for the intersections of the lines in this diagram are
given in Table 1; note that the core pentagon is the same as the in Figure
5. Due to symmetry considerations, the subdivisions along the segment F'S
~ are respectively congruent to those along WN; and the subdivisions along
GV are respectively congruent to those along XU. Lengths of these subdi-
visions may be calculated from the coordinates in Table 1. Upon comparing
coordinates for C' and D, and also for B and E, it is evident that reflecting
through the line containing ', J, A, and V is equivalent to changing the sign
‘of the y-coordinate. Thus, X would have coordinates (1/3,~1/8,1/8). For
convenience; the following abbreviations are used in Table 1:

=(B-10°+1, Ay:=(B-1)°—1,
=2-p+1, Ny=p-p-
N3:=f2-38+1, N,:=p?-363+3.

The cell adjacency diagram is given in Figure 10, and follows the conven-
tion of Peter Messer (see [3]). Each circle represents a different type of
three-dimensional cell in which space is divided by the facial planes of the
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- J-dodecahedron, where an asterisk denotes a chiral cell. Annotations are in-
terpreted as in the following example: cell F, a chiral cell, rests atop cells B
and C, meeting at two-dimensional facets 2a and 2c, respectively (see Figure
7). The exposed facets are 3¢ and 3e. In the final stellation, cell G covers 3¢, -
but 3e is still exposed; this is indicated by the connection to the “infinite™
cell labelled with oo (more about the use of this cell later). The number in
each circle represents the “level” of the cell in the sense that all the cells at
a given level completely cover (to the extent possible; recall that some facets
are exposed in the final stellation) those cells at a level one Iower. Thus, :
" beginning with the core dodecahedron, we may build succesive “shells” out- -
ward at levels 1, 2, 3 and 4. The mainlinefstelzlations thereby produced are -
- shown in Figures ?77. '

A= (8,0,-1), L = (Ny/Do, —Na/ g, N3/ Ag),
; B=( 0,0, —0), M =(1,2-4,0),
C'=(1,-5,0), N =(1,1/(1 - B),0),
- D= (1,8,0), P = (N1/A1,—Nz/ A1, N3/ Ay),
. E=(0,0,~0), Q = (—N3/A1, Ni/A1, No/Ay),
F=(1/(1-0),0,8/(1= 62,  R=(Ns/Ag,No/As,Ns/Ay),
G =(1/p, l/ﬁ, 1/6), 8= (0,1,-1/(1 - B)),
H = (=Ny/Aa, NofDg, No/B3), T =(0,8/(1 = B, ~1/(1 - B)),
- J=(2-4,0,1), =(0,(2 - B)/(1 - B)%,~1/(1 - B)),
K = (~No/Ar, ~N3 /A, Nz/Al), V= (=1/(1~ 5),0,(8-2)/(1 - B).
g Table 1

Using the criteria for being a stellation given in The Fifty-Nine Icosahedra,
we find that there are 270 stellations of a 3-dodecahedron in this parameter
range (including the core dodecahedron). This rather surprising abundance
~is due to the fact that there are three chiral cells B, E and F. We take
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& moment to explore a few

stellations.
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Table 2

.First, we distinguish between the two types of chiral cells. Divide B into |
~ chiral cells B' and B, E into E' and E?, and F into F' and F? such that
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cells E' and F" rest atop B, and create an enlarged cell diagram as in Figure
9. Then a collection of cells constitutes a stellation if and only if both it and
its complement are connected; i.e., there is a path from each cell to every
- other cell along edges of the graph connecting the selected cells.

BB [ B[ B [B [ B[ B [B[B | BB
IB;Z E|E|E|E|EB|E|EB|EB|E|E|E]
|\FlF|lF || F|P || |rR || e
Ol x v P|lv i v|P|P|P|ylx]|P]|x
Al x|yvIPlyvivielrlviv]x]|v]
Clx x| P | x| x| |P| x|+ x x | %
D| x | x| x| x|V | PP |V |Vv|x]|V]x
@l x|viP|v|v|iv]iP|P|v]x]|P]|x]
Ac| v |Fs|p |Fs{ps|y | P |rs|ms| P |FS|y
AD | x | x| x | x| v | x|P|Vv]Vv] x \/ X
AG | x I | PV |V |VI|IP|V|V]|x]|V]x
C'D, Vx| x| x| x|/ P | x|V x|x |
G| x x| Pl x| x|/ P| x|V X x| X
e v x| x|x|v viP|v|Vv]P|Vv|V
AcD| v |FS| x |FS|FS| v | P |FS| | x |FS| vy
[7tee2 BV BVATR N BVE RVE VA BV VA [ 20 BVE B,
ADG | / | x | x | x |/ | x | P |V |V | x|V |V
CDG| || x| x | x | x|/ | P | x|/ x| x|
ACDG | v |FS| x [FS |y | v | PV V]| x|v]|V

Table 2 (cont.)




- For example, AB'CG is not a stellation because if we select cells 4, B!, C
~and G and only the edges of our graph whose ends are among these cells, we
~ find that there is no path from G to the other cells (see Figure 10(a)). Anal—

: ~ ogously, AB'DF'F? is not a stellation because, although itself connected,

[its induced complement (that is, the graph induced by the remaining cells,
as in Figure 10(b)) is not, as there is no path from C to any of the remaining
cells.

The condition on the connectedness of the complement implies that any
stellatlon including cell A implicitly includes the core dodecahedron, and so
~ the core dodecahedron is omitted from Figure 9. We also note that the reason
- the cell labelled “c0” is included is so that the definition of a stellation in
terms of connectedness is consistent with the definition given in The Fifty-
Nine Icosahedra (Miller’s rule (iv)).

The 270 possible stellations are listed in Table 2, where the following notes
-apply:

1 The rows are labelled by the various combinations of the symmetnc

- (that is, nonchiral) cells, where the empty set () indicates that no

symmetric cells are to be included. The columns are labelled by the

- various combinations of chiral cells, with the following omissions: a)

~ reflected images are omitted, so that since B'E" is included, B*E? is

- not; since BE'F? is included, BE?F! is not; b) any combination which

includes E and F cells without B cells is omitted, since the only way to

“connect” E and F cells is through the B cells; thus, columns headed

EF, E'F, EF', E'F', and E'F? are not included; c) combinations

containing the pair B'E? can never be connected, and so are omitted;

d) Since some B cell is required to connect an F cell to the other cells,

the only stellations including F cells without B cells are the provisional

~ stellation E and the chiral stellation E'; as a result, columns headed
“E” and “E' are absent.

To determine the status of a potential stellation (see below), just locate

the appropriate entry in Table 2. For example, to find the status of

AB'CEF?, find the intersection of the row labelled “AC” and the
~ column labelled “B'EF?”,
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2. An “x” in the table indicates that the particular combination of cells
~does not yield a stellation as described above, while a “\/” signifies
that the combination does yield a stellation. When a stellation is fully
supported in the sense that if a cell is present in a combination, then
‘every cell beneath it is also present, the notation “FS” is employed. Fi-
nally, a “P” is used to indicate that a stellation is “provisional” in the
following sense: a combination of cells determines a provisional stel-
- lation if removing the horizontal dashed lines in Figure 9 disconnects
the cells. Thus, £ determines a provisional stellation since E* and E?
share no common facet. Miller, in rule (v) for describing stellations
in The Fifty-Nine Icosahedra, “allow[s] the combination of an enan-
- tiomorphous [chiral] pair having no common part” since he remarks
that this occurs in only one case. This phenomenon occurs no fewer
than 53 times in Table 2 (including the stellation E), and so warrants
a separate classification.

3. Table 2 described the possible 270 stellations, of which 213 are chiral.
~ In addition, there are 35 fully supported stellations and 53 provisional
- stellations. It is not difficult to convince oneself that no stellation can

be both fully supported and provisional.

- 4.2 The parameter range 0 < 8 < 772,

‘The stellation diagram for this range is given in Figure 11 (where in fact
8= 0.22) and the corresponding cell diagram is given in Figure 12, where
the same conventions apply as before. Coordinates for points in Figure 11
are still as in Table 1 since they can be obtained as intersections of groups of
‘planes with the same equations as those for the parameter range 772 < 8 < 1;
the parameter 3 takes on different values here, giving a different topology
-~ (that is, connectivity of cells).

The enumeration of the stellations in Table 3 follows the same conventions
as before, with the following adjustments. Referring to the notes in 4.1, we
see that (la) and (1d) still apply (where F is replaced by G), there is no
~ analogue to (1b), and as far as (Lc) is concerned, B'E? and B'E?G" are the
only inadmissible combinations containing B*E? (the cell G? is required to
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Jjoin E? to other cells). We also need not. consider a column headed E'G2,
‘since some B cell is required to connect E' to other cells. In addition, because
‘the inclusion. of cells A and D without C disconnects C from the rest of the

- cells, we may eliminate rows AD and ADF from consideration. Similarly,

since there is no way to connect cells C' and F without either A or D, we

- may elimnate row C'F'. Finally, since C' is not connected to any of the B, F,
~or G cells, the only stellation in a row labelled C' would be C itself (under

the “Q” column); with this in mind, we do not include a row headed C.

- The enumeration results in 205 stellations, 163 of which are chiral. There
are 27 fully supported stellations and 51 provisional stellations.

IFS| P |/ I||P|V|P|P|P |V x| % %,
Al v |rs|msx|x |FS| P |FS|FS| x| x| x|
DivV/IVIVIx|x||x|P | x| X >‘< ><' 
PV IIVIVIVIVIV P VIVIV V]
AC|FS|FS|FS| x| x [FS| P |FS |FS | x | x | x |
AR | x |Fs |y x| x|FS| P |FS| v v ]| v |V

[ eplvlx|vx|x|x|P|x]|yv|x]|x X
DF | x | x|« | x| x X | x| x|y x|y
ACD | v IFS| v/ x| x [FSI P {FS| v [ x| x| x|
ACF | x |FS| /| x| x |FS| P |FS| v |V |V |V
| CDF || x| x |/ x| x| x| x x‘_l-\/'.x v | X
J4opr | x ||y | x| x|Fs| x [Fs| v |v]| V]|V

Table 3
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Table 3 (cont.)
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E' | E' | E2 E E2 | Et El'
GG |GGG |GF|GF
6| P Vo x| P x| x| x
Al \/“rT x | P | x| x| x|
Dl x || x|P| x| x| x
FIVIVIVIVIVIV]V]
AC \/ Vx| P x| x| x
14 VA RV VA VA VA RVE B
CD|| x | /| x| P | x| x| X
CDF | x |/ | x| x| x || X
ACD|| v | v | x | P | x| x >< |
ACF | v |V | V[V IV |V]|V]
CODF || . x | / | x | x | x |4 | X
ACDF | / | «/ | x | x | x | v/ | ¥

Table 3 (cont.)

s 5 The Regular Dodecahedron

Recall that the regular dodecahedron, in part due to its highly symmetric
~ nature, is usually considered to have just three stellations (other than the core
~ dodecahedron): the small stellated dodecahedron, the great dodecahedron,
~ and the great stellated dodecahedron. Let us call the outermost cells which
- constitute these stellations X, Y, and Z, respectively, so that X consists of
twelve pentagonal pyramids, Y consists of thirty tetrahedral wedges, and Z

- consists of twenty triangular bipyramids.
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That there are just three types of cells is a result of the icosahedral (or
- dodecahedral) symmetry of the dodecahedron. In this section, we consider
- the regular dodecahedron as a polyhedron with tetrahedral symmetry, and

" examine its stellations in this context. In other words, we seek groups of

dodecahedral cells which possess no more than tetrahedral symmetry.

‘For example, consider the final stellation of the f-dodecahedron described in
§4.1. Twenty “spikes” are evident — the twelve D cells, along with the eight
E cells (four each of E* and E?) - and as we let the parameter 3 approach
772, we see that these cells “become” the twenty spikes of the great stellated
- dodecahedron. Thus, from a “tetrahedral” perspective, we can imagine the
Z cells as being comprised of D, E', and E? cells. In a similar fashion, we
can imagine the Y cells of the great dodecahedron to be composed of B?,
B?, and C cells. Finally, the X cells of the small stellated dodecahedron
correspond to the A cells. For practical purposes, we ignore the F and G
cells as they “disappear” as 3 approaches 772,

. Thus, we may consider the cells of the regular dodecahedron as being com-
prised of the A, B, C, D, and E cells of Figure 9, as shown in Figure 13.
Here, however, we link the cells B!, B?, and C since they together form the
Y cells. Similarly, we link the B2, E2, and D cells. Using the conventions of

 Tables 2 and 3, we enumerate the 41 “tetrahedral” stellations of the regular

~ dodecahedron in Table 4.

* One subtlety arises, however, as illustrated in the following example. Con-
sider the set of cells ABLD. Clearly, A, B!, and D are connected. But the
connectedness of the complement — that is, the cells B2, C, E', E?, and
oo — depends of the dashed horizontal link between B? and C. Since the
C cells are in actuality sandwiched between the A and D cells, the “holes”

“(i.e., absence of C cells) are not apparent in AB!'D. Hence, from an exterior
point of view, the set of cells ABLD is indistinguishable from AB'CD. Thus,
we disallow AB'D as a stellation, and in general do not consider horizontal
links when determining the connectedness of the complement of a particular
set of cells. ‘
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¢ | B|B'E|E gBEL glgi
olrs|p|v|P|v]|P|P|P|V]
AlFS|FS|FS|x| x |FS| P | FS | FS
C X | P x| x| x P | x
Dl | x \/"xP X |ox | x|V
Ac | rsrs|Fs| x| x (S| P | FS | FS
AD || x X | X | X | X || X X X X
GD\/x.:\/xPxx'xx\/
lAcD |  |FS| &/ | x| x |FS| x | FS| ¢
Table 4
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