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ABSTRACT: At Quincy Senior High School in Quincy, Illinois, USA, an increasing
number of eleventh graders complete calculus. The Creative Problem Solving in
Mathematics course (CPSM) was designed to challenge these students in the
twelfth grade. A brief history of the development of the course will be followed by a
week-by-week syllabus of topics covered. Several illustrative examples of course
content will then be given.

INTRODUCTION AND MOTIVATION

In the United States, gifted mathematics students often take calculus in the eleventh
grade. In the twelfth grade, many students take an Advanced Placement course in
statistics or perhaps enroll in a further semester of calculus at a local community
college.

Is this the best way to encourage our best and brightest mathematics students? What
is missing in this approach?

Before answering this question, it is helpful to review a few recent reforms in math-
ematics education in the United States. These reforms, in part, helped create educa-
tional environments wherein students routinely complete calculus before graduating
from high school.

In 1980, the National Council of Teachers of Mathematics (NCTM) published An
Agenda for Action: Recommendations for School Mathematics of the 1980’s. In this
monograph, the NCTM recommended that “[m]ore mathematics should be required
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for all students and a flexible curriculum with a greater range of options be designed
to accommodate the diverse needs of the student population.” As this recommen-
dation, among others, began being implemented in schools, the NCTM perceived a
need to develop the Curriculum and Evaluation Standards for School Mathematics.
Published in 1989, this document called for a common mathematical experience to
be delivered to all students in the United States. This experience was to enhance op-
portunities to learn solid mathematics and help prepare every student for entry into
the work force, college-bound or not.

Around this time, the AMOCO Foundation funded the University of Chicago School
Mathematics Project which had two parallel development phases. The K–6 (kinder-
garten through sixth grade) phase examined international texts and research on child
development in order to develop a mathematically rich curriculum which challenges
all students and encourages mathematical growth through experiences related to
their daily lives.

The secondary phase (seventh grade through twelfth grade) had as its “...most fun-
damental feature, its focus on upgrading the mathematics experience of the average
student” [Usiskin, 1990, p. 4]. It provided stimulating applications of mathematics
and introduced topics not usually presented to average or even gifted students until
college. For example, matrix algebra and transformations, and linear programming
are included in the UCSMP Advanced Algebra text used by average eleventh grade
students.

Beyond these reforms, the authors have had varied experience with coaching math-
ematics teams for the Illinois Council of Teachers of Mathematics (ICTM) Regional
and State Mathematics Contests. One strong feature of the ICTM Mathematics Con-
tests is the Oral Competition. Students participating in this competition study a topic
(different each year) which is not normally taught in a high school curriculum, such
as geometrical inversion or error-correcting codes. Often such topics are not even
included in a standard undergraduate mathematics curriculum.

During the competition, each student is given fifteen minutes to prepare solutions
to three problems related to that year’s topic, and seven minutes to present their
solutions to two university professors who score the presentations based on a com-
mon rubric. The professors may then ask follow-up or clarifying questions for three
minutes after the presentation.

Preparation for the Oral Competition also included a simulation of contest conditions
where a student would present solutions to his or her peers on the mathematics team.
Based on observations of both the oral competitor and the nature of the follow-up
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questions by peers, it was evident that these non-traditional topics were of significant
interest to the mathematics team students and helped motivate the team.

Such experience with mathematics competitions, together with an ongoing relation-
ship with an outstanding mathematics community in Illinois (notably John Benson,
John Dossey, John McConnell, and Zalman Usiskin), suggests an answer to the ques-
tion posed earlier. What is missing from the mathematics education of our brightest
high school students is a significant exposure to non-traditional topics. This includes
having students read, reason, and write about mathematics at a college level, focus
intensely on problem-solving, and apply their knowledge to practical situations.

Of course this question is not answered in a vacuum. One of the social issues in-
volved in Quincy, Illinois is the loss of the brightest high school graduates. Al-
though Quincy is an urban environment with strong medical, electronics, and arts
communities, a rich architectural history, a four-year private university, and a two-
year community college, its geographic remoteness is not attractive to young college
graduates. Most of Quincy Senior High School’s top students do not return home af-
ter college. Offering our gifted students a stimulating non-traditional mathematical
experience may strengthen their ties to Quincy.

Introducing a course like CPSM also has an impact in the educational environment.
If students are expected to read, write, and think about mathematics at an advanced
level in their capstone course, teachers begin to see it as their task to prepare students
for such a course. This begins to change the way teachers themselves teach and think
about mathematics and the coursework they deliver.

The capstone course also helps guide instruction. For example, the construction of
Platonic solids and other polyhedra now occurs in other grades. In 2004, CPSM stu-
dents and instructors went to several sixth grade classrooms and helped them build
various types of dodecahedra. In general, educators in Quincy schools tend to be
more familiar with polyhedra than they were a decade ago. Thus, upgrading the
mathematics experience of the best students and their teachers supports the upgrad-
ing of the mathematics experience of average students and their teachers.

THE DEVELOPMENT OF CPSM

Development of CPSM began in 1996. A wide variety of stakeholders were in-
volved in the planning: mathematics team students who were enrolled in calculus as
eleventh graders, former students who were in the gifted program at Quincy Senior
High School, parents of gifted students, key members of the electronics research and
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medical communities, mathematics and science faculty members at Quincy Senior
High School, and a mathematics faculty member from Quincy University. Over the
course of a month, the team grappled with designing a course which best challenged
and served the needs of the brightest students while meeting the community’s need
to encourage students to return to Quincy after graduating from college.

The need to round out the mathematics experience of traditionally college-bound
students, the excitement generated by the topics of the Oral Competition, and the
students who assisted in the course design strongly influenced the structure and con-
tent of the course. The outcomes of CPSM agreed upon were:

1. The student will explore mathematics topics beyond calculus.

2. The student will conduct a research project, with the assistance of a mentor
from the community, if possible.

3. The student will use project management and teamwork skills in conducting
and evaluating the research project.

COURSE HISTORY

The first Creative Problem Solving in Mathematics course was run during the 1997–
1998 academic year. Four students enrolled, and were taught by Todd Klauser of
Quincy Senior High School and Vince Matsko of Quincy University. Mathemat-
ical topics included were taxicab geometry, geometrical inversion, polyhedra, fi-
nite differences, mathematical envelopes, probability, number theory, and spherical
trigonometry. The class designed and built a four-frequency icosahedron, which
established a tradition of doing class projects. One day a week was set aside as
Problem Day, where students worked on problems from a variety of mathematical
areas. Each student also presented the results of an individual research project.

During the second year, enrollment increased to eleven students, including one stu-
dent who took the course through independent study due to scheduling conflicts.
As enrollment grew, the instructors grew more comfortable with course content and
flow, which allowed for altering the content from time to time. In addition, a larger
number of students allowed for more creative and extensive class projects.

Now enrollment is typically 12–15 students (Quincy Senior High School has ap-
proximately 1700 students in grades 10–12, with 36 juniors in calculus). Cur-
rently, the course is based on an innovative geometry manuscript, Polyhedra and
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Geodesic Structures [Matsko, 2005]. A detailed outline of the course is provided
below. Former students occasionally return as guest speakers to talk about careers
in mathematics-related fields.

Students have found the course exciting and valuable. One former student remarked
that CPSM was the most beneficial course in preparing for college. Another, refer-
ring to her individual project, said, “it has been the most wonderful experience for
me.” Others said, “I [was] challenged and learn[ed] about new areas of math that
I never new existed,” and “Because of the class size we [were] able to enjoy the
learning in an environment unlike that of any of my other classes.”

SYLLABUS

Below is the current topic-by-topic syllabus of CPSM, with the approximate length
of time spent on each topic. Class meets five days a week for 47 minutes. One day
every two weeks is Problem Day, which consists of presentations of solutions to two
problems assigned over the two-week period. These problems are chosen to expose
students to various topics in mathematics and to develop technical writing ability.
Problem areas include number theory and Diophantine equations, combinatorics,
calculus, and probability.

Students select individual topics for a research project sometime in the third quarter.
Occasional class days are devoted to work on these projects. The three-week project
period at the end of the year allows for students to give twenty-minute presentations
on their projects. They must also write a ten-page summary paper. Students some-
time work in pairs on larger projects. Past projects include: building stellations of
an irregular dodecahedron, constructing a harmonograph, writing programs to ren-
der three-dimensional computer graphics, cryptography, and designing a geodesic
house.

In addition to the individual projects, students undertake a more extensive class
project. For a recent example, see the Q-Ball at http://www.vincematsko.com/.

Hands-on work, whether in the form of drawing mathematical envelopes or building
polyhedra, is an integral part of the course. A “?” next to a topic indicates that
individual or class building projects are a part of that unit. A “�” next to a topic
indicates that students use Geometer’s Sketchpad during the unit.

Chapter numbers refer to the draft manuscript, Polyhedra and Geodesic Structures
[Matsko, 2005]. Some chapters are not covered in class but are handed out for self-
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study and possible use for individual projects. Material for other topics is given as
class notes.

Some of these topics are illustrated below by means of detailed examples. When
this is the case, “see below” is included in the description.

1. � Basic Constructions (Appendix A, 1 week). Basic compass and straightedge
constructions are reviewed.

2. Trigonometry (Chapter 0, 1 week). A review of important trigonometric rela-
tionships is given.

3. � Angles and Constructions (Chapter 1, 1 week, see below). The construction
of regular figures and the trigonometric functions of 36◦ and 72◦ angles are
introduced.

4. ? � The Platonic Solids (Chapter 2, 1 week, see below). Geometric and alge-
braic enumerations of the Platonic solids are given.

5. ? � Spherical Trigonometry (Chapter 3, 2 weeks, see below). Basic formulas
are derived and used to calculate the edge and dihedral angles of the Platonic
solids. Non-Euclidean considerations are emphasized.

6. ? � Taxicab Geometry (2 weeks, see below). Students explore the geometry
of the “taxicab” metric defined by

d((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|.

7. ? � Geodesic Structures (Chapter 4, 2 weeks). Spherical trigonometry is ap-
plied to the design and construction of geodesic spheres.

8. ? � The Archimedean Solids (Chapter 5, 1 week). The Archimedean solids
are enumerated both geometrically and algebraically.

9. Angles and Archimedeans (Chapter 6, 2 weeks). Spherical trigonometry is
applied to calculating the edge and dihedral angles of the Archimedean solids.

10. �Geometrical Inversion (2 weeks). Inversion in a circle is presented, including
extending the plane by adding a point at infinity.

11. ? � Geodesic Structures, II (Chapter 7, 1 week). Further techniques for creat-
ing geodesic spheres are derived using spherical trigonometry.
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12. Antiprisms and Snub Polyhedra (Chapter 8, handout only).

13. ? Duality (Chapter 9, 1 week). Duals of the Platonic and Archimedean solids
are discussed. Their edge and dihedral angles are calculated using spherical
trigonometry.

14. Geodesic Structures, III (Chapter 10, handout only).

15. ? Deltahedra (Chapter 11, 1 week). The deltahedra – convex polyhedra with
equilateral triangular faces – are enumerated. Dihedral angles are found using
spherical trigonometry.

16. Kepler-Poinsot Polyhedra (Chapter 12, handout only).

17. Euler’s Formula (Chapter 13, handout only).

18. Coordinates of Polyhedra (Chapter 14, 2 weeks, see below). Cartesian coordi-
nates in three dimensions are found for the vertices of the Platonic solids and
some Archimedean solids.

19. � Mathematical Envelopes (2 weeks, see below). A parameterized family of
lines gives the illusion of curvature; the apparent curve is the envelope. Cal-
culus is used to find a Cartesian equation for an envelope given a parameteri-
zation of lines.

20. Matrices and Symmetry Groups (Chapter 15, 2 weeks). The symmetry groups
of some of the Platonic solids are represented as groups of matrices.

21. Graph Theory and Polyhedra (Chapter 16, 2 weeks). The adjacency of vertices
on a polyhedron may be represented as a graph. Various properties of such
graphs are discussed.

22. Projects (3 weeks).

Of course a class syllabus is necessary in order for educators to evaluate whether
a course such as CPSM might fit into their curriculum. It is equally important,
however, to give a feel for the nature of the mathematics presented and the level of
rigor used in the classroom. Several detailed examples are included to illustrate the
variety of mathematics covered and the way that topics are presented.
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ANGLES AND CONSTRUCTIONS

The usual constructions with straightedge and compass are reviewed, such as bisect-
ing an angle, dropping a perpendicular to a line from a point, or trisecting a segment.
In addition, students construct regular pentagons, decagons, and pentadecagons (15-
gons).

The golden ratio τ (sometimes called φ in algebra) occurs frequently in a study of
three-dimensional polyhedra involving pentagons. For the planar case, consider the
pentagon in Figure 1. It is clear that ∆pqr and ∆qst are similar isosceles triangles
with apex angle 36◦ and base angles of 72◦. Call the ratio of the length of the longer
sides to that of the shorter side of either triangle ρ. Let the notation “[pq]” denote
the length of the segment pq. With x = [pq] = [qr] = [qt] and y = [pr] = [rs],
consideration of these similar triangles shows that

ρ =
x

y
=

x + y

x
= 1 +

y

x
= 1 +

1

ρ
.

Multiplying through by ρ yields ρ2 = ρ + 1, and hence we obtain the quadratic
equation ρ2 − ρ − 1 = 0. By applying the usual quadratic formula, we see that
this equation has one positive and one negative root. Since our ratio is positive, we
choose the positive root, resulting in τ = (1 +

√
5)/2.

sq

p

r

t

Figure 1

We may use these geometric facts in trigonometry as well. By considering the
isosceles triangles mentioned above, it follows that

sin 18◦ = cos 72◦ =
1

2
(τ − 1), sin 54◦ = cos 36◦ =

τ

2
.
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THE PLATONIC SOLIDS

A Platonic solid is a convex polyhedron whose faces are all the same regular poly-
gon, with the same number of polygons meeting at each vertex. It is well-known
that there are five Platonic solids.

To see this algebraically, let p denote the number of sides on each face of a Platonic
solid P , and let q denote the number of faces meeting at each vertex. Also, let V , E,
and F denote the number of vertices (corners), edges, and faces, respectively on P .
A standard result for convex polyhedra is Euler’s formula:

V − E + F = 2.

This may be illustrated with the example of cube, which has 8 vertices, 12 edges,
and 6 faces, with 8 − 12 + 6 = 2.

Since there are p edges on each of F faces, there are pF edges on the faces of P .
But this counts each edge of P twice, so that pF = 2E. A similar argument yields
qV = 2E. Solving these relationships for E and substituting back into Euler’s
formula yields

1

p
+

1

q
=

1

2
+

1

E
.

This is an example of a Diophantine equation; that is, an equation with integer
solutions. Since regular polygons have at least 3 sides and at least 3 polygons meet
at each vertex of a convex polyhedron, p and q must be integers 3 or greater. Note
that if both p ≥ 4 and q ≥ 4, then 1/p + 1/q ≤ 1/2, so that at least one of p and q
must be 3. This allows all solutions to be enumerated:

Platonic solid p q V E F

Tetrahedron 3 3 4 6 4
Cube 4 3 8 12 6
Octahedron 3 4 6 12 8
Dodecahedron 5 3 20 30 12
Icosahedron 3 5 12 30 20

Table 1
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The Platonic solids may also be enumerated geometrically.

A net for a polyhedron is an arrangement of polygons in the plane which may be
cut out and folded to make a three-dimensional model of the polyhedron. Students
design their own nets for the Platonic solids using Geometer’s Sketchpad, and then
use these nets to construct models using heavy paper, scissors, and glue. (Nets are
also included in the text.)

Students are also guided through a set of exercises which algebraically enumerate
the Archimedean solids. This enumeration is quite a bit more involved than the
Platonic case.

SPHERICAL TRIGONOMETRY

A spherical triangle is a triangle on the surface of a sphere, the sides of which are
arcs of great circles of the sphere. We find examples of great circles on a sphere by
considering lines of longitude and the equator on a spherical globe. We may trace
out a spherical triangle on a globe by beginning at the North Pole, following 0◦ of
longitude to the equator, travelling west until we hit 60◦ of longitude, and following
60◦ of west longitude north back to the North Pole (see Figure 2).

60◦W
0◦

Equator

North Pole

Figure 2

In the plane, we measure the six parts of a triangle by measuring the lengths of
the sides and the measures of the angles between adjacent sides. The situation is
somewhat different for spherical triangles, since all parts are angles.

Recall that each side of a spherical triangle is an arc of a great circle – and thus can
be measured in degrees relative to that great circle (which has the same radius as the
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sphere). The angles between adjacent sides of a spherical triangle are called vertex
angles. The vertex angle between two sides of a spherical triangle is just the angle
between the two planes containing the great circles of which the sides are arcs. In
the example above, the sides of the spherical triangle have measures 60◦, 90◦, and
90◦, and the three vertex angles have measures 60◦, 90◦, and 90◦ as well. (This
coincidence is an accident of this particular example, and does not occur for every
spherical triangle.)

We are used to the angles of a plane triangle adding to 180◦ regardless of the shape
of the triangle. The measures of the vertex angles of the spherical triangle described
above sum to 90◦ + 90◦ + 60◦ > 180◦. In fact, the sum of the vertex angles of
a spherical triangle is always greater than 180◦, so that spherical geometry is an
example of a non-Euclidean geometry. If we denote this sum by Σ, we find that

1

720◦
(Σ − 180◦) is the fraction of the surface of the sphere occupied by the spherical

triangle. Thus, our triangle occupies 1

720◦
(240◦ − 180◦) = 1

12
of the surface of the

sphere.

�

�

�

A

B

Cb

c

a

Figure 3

Of course formulas of plane trigonometry are not applicable to spherical triangles.
But they may be used to derive some useful formulas for spherical trigonometry (see
Figure 3):

cos c = cos a cos b + sin a sin b cos C, (1)

cos C = − cos A cos B + sin A sin B cos c. (2)

As an example of the use of these formulas, consider the spherical triangle shown in
Figure 4.
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Figure 4

On a globe, p would be the North Pole, and q and r would be two points separated by
90◦ on the equator. All sides have measure 90◦, and all vertex angles also measure
90◦. Thus, ∆pqr is both equilateral and equiangular.

Let s, t, and u be the midpoints of the sides of ∆pqr, and join pairs of these points
by arcs of great circles. In the Euclidean plane, joining midpoints of the sides of an
equilateral triangle produces four smaller equilateral triangles.

What happens in the spherical case? Applying (1) to ∆sqt results in

cos e = cos 45◦ cos 45◦ + sin 45◦ sin 45◦ cos 90◦,

so that cos e = 1

2
. Thus e = 60◦, and hence ∆sqt is not equilateral, although due to

symmetry, ∆stu is.

In the Euclidean case, D would have measure 60◦. Here, using (1) again, we see that

cos 45◦ = cos 45◦ cos e + sin 45◦ sin e cos D,

so that cos D = 1/
√

3. Thus D ≈ 54.736◦.

This example also illustrates that equilateral triangles come in different sizes; equi-
lateral ∆pqr has sides measuring 90◦, while equilateral ∆stu has sides measuring
60◦.

It takes students some time to be able to think “spherically” since most of what they
know in Euclidean geometry does not carry over into spherical geometry. Study of
spherical geometry is often the students’ first exposure to a non-Euclidean geometry.
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Spherical trigonometry is used extensively in the course to study the edge and dihe-
dral angles of polyhedra and the design of geodesic spheres. As an interesting appli-
cation, students create and build geodesic spheres by first performing the necessary
calculations involving spherical trigonometry. With the help of the instructors, they
then use these calculations to create the pieces needed to assemble the models.

TAXICAB GEOMETRY

Students are familiar with the properties of geometric figures in Euclidean geome-
try. These properties are based on a coherent system of postulates, theorems, and
definitions. One such definition is that of the distance between two points, given by
the usual formula

d((x1, y1), (x2, y2)) =
√

(x2 − x1)2 + (y2 − y1)2

for points (x1, y1) and (x2, y2) in the plane.

In taxicab geometry, the definition of the distance between two points (x1, y1) and
(x2, y2) is given by

dT ((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|

(see [Krause, 1986, p. 4]). This results in a non-Euclidean geometry which students
can explore with a little guidance.

Consider the points A(2, 2) and B(8, 4), as shown in Figure 5. In Euclidean ge-
ometry, the midpoint of the segment between these two points may be defined in
terms of the distance function as follows: the midpoint is that point M such that
d(A, M) + d(M, B) = d(A, B) and d(A, M) = d(M, B). This point is uniquely
determined, and is given by M(5, 3). Note that the condition d(A, M)+d(M, B) =
d(A, B) ensures that M is on the line segment between A and B.

Consider the same definition of the midpoint using the taxicab distance. Note that the
point P (6, 2) satisfies dT (A, P )+dT (P, B) = dT (A, B) and dT (A, P ) = dT (P, B).
In fact, dT (A, R) + dT (R, B) = dT (A, B) and dT (A, R) = dT (R, B) for each point
R on the line segment from P to Q. Thus, the midpoint of a segment cannot be de-
termined uniquely on the basis of the distance function alone. When the additional
assumption is made that the midpoint of a segment lies on that segment, then the
midpoint may be uniquely determined in taxicab geometry. Recall that this addi-
tional assumption was not necessary in Euclidean geometry.
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Figure 5

In Euclidean geometry, the figure defined by all points P with d(P, (0, 0)) = 1
is usually referred to as the unit circle. What figure is determined by points P in
taxicab geometry with the property dT (P, (0, 0)) = 1?

It is clear that moving one unit along either axis results in a point on this figure (see
Figure 6(a)). However, the points ( 1

2
, 1

2
), (1

2
,−1

2
), (−1

2
,−1

2
), and (− 1

2
, 1

2
) are also

on this figure, as shown in Figure 6(b). When all possible points are included, the
result is as shown in Figure 6(c). Thus the unit “circle” in taxicab geometry is in fact
diamond-shaped.
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1 2−1−2

1

2

−1

−2

(c)

Figure 6

If the symbol “π” refers to the ratio of the circumference of a circle to its diameter,
it happens that this ratio is different in taxicab geometry from the usual value in Eu-
clidean geometry. The diamond-shaped “circle” in Figure 6(c) has a circumference
of 8 and a diameter of 2, so that π = 4 in taxicab geometry.

In addition to these geometrical considerations, there is a wealth of algebraic ideas
to explore in taxicab geometry. As the distance from the point P (x, y) to the point
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(0, 0) is given by

dT ((x, y), (0, 0)) = |x| + |y|

in taxicab geometry, it is evident that the diamond in Figure 6(c) may be found be
graphing the Cartesian equation

|x| + |y| = 1.

Many interesting geometrical results in taxicab geometry may be proved or verified
by such algebraic methods.

COORDINATES OF POLYHEDRA

For many applications, such as computer graphics or engineering problems, it is nec-
essary to represent a problem in a three-dimensional coordinate system. To graphi-
cally represent a polyhedron in three dimensions, it is necessary to know the coordi-
nates of its vertices.

The usual conventions for drawing a two-dimensional Cartesian coordinate system
are to have the positive x-axis pointing due east and the positive y-axis pointing due
north so that the axes are perpendicular. In creating a three-dimensional coordinate
system, the third axis, called the z-axis, is imagined to point “straight up” so that it
is perpendicular to the other two axes, just as walls in the corner of a room meet in
mutually perpendicular line segments. The difficulty lies in trying to draw a picture
of a corner – there is not enough room on a two-dimensional piece of paper for three
mutually perpendicular axes.

There are a few different conventions for drawing a three-dimensional coordinate
system in the plane. We will use the convention illustrated in Figure 7, where the
y-axis points due east, the z-axis points due north, and the x-axis “comes out” in a
southwesterly direction. When plotting a point in this coordinate system, it is easiest
to first move along the x-axis according to the x-coordinate of the point, and then
from this location, move according to the y- and z-coordinates as in two dimensions.

Our first task is to find the coordinates of the vertices of a cube. Recall that in two-
dimensions, (1, 1), (−1, 1), (−1,−1), and (1,−1) are vertices of a square with edge
length 2, and the center of this square is (0, 0).
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+y

+z

+x

(1, 2, 3)

Figure 7

It is now an easy task to make a cube. Thinking of our square as lying in the xy-
plane, moving it “up” one unit produces the square with vertices (1, 1, 1), (−1, 1, 1),
(−1,−1, 1), and (1,−1, 1) in the plane z = 1. Moving the square “down” one
unit results in the square with vertices (1, 1,−1), (−1, 1,−1), (−1,−1,−1), and
(1,−1,−1) in the plane z = −1. These translated squares are the top and bottom
faces of the cube, as shown in Figure 8.

Note that the vertices of the cube consist of all lists of three coordinates, each of
which is either +1 or −1. Since there are two choices for each of three coordinates,
there are 23 = 8 vertices on a cube. Also note that two vertices are adjacent if and
only if they differ in exactly one coordinate; this coordinate indicates the axis to
which the edge joining these two vertices is parallel.

�(1,−1,−1) �

(1, 1,−1)

�

(1, 1, 1)
�(1,−1, 1)

� � (−1, 1,−1)

� (−1, 1, 1)�
(−1,−1, 1)

(−1,−1,−1)

Figure 8

The midpoints of the edges of a cube are the vertices of a cuboctahedron, one of the
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Archimedean solids (see Figure 9). Since coordinates for the vertices of the cube
are known, coordinates for the vertices of the cuboctahedron may be found using
the usual midpoint formula. For example, coordinates for the vertex P are given by

(−1 − 1

2
,
1 + 1

2
,
1 − 1

2

)

= (−1, 1, 0).

� �

��

� (−1, 1,−1)

� (−1, 1, 1)�

�

�

�

�

�

�

�

�

�

P

Figure 9

It is not hard to show that one of the coordinates of each vertex of the cuboctahedron
is 0. In the example above, the z-coordinate is 0 because P is the midpoint of an
edge of the cube parallel to the z-axis. The other two coordinates are either +1 or
−1.

By relating other Platonic and Archimedean solids to the cube, coordinates for their
vertices may also be found.

MATHEMATICAL ENVELOPES

A popular activity for students is creating geometrical figures from string, such as
the one shown in Figure 10. This is an example of a mathematical envelope of lines.
In other words, if enough lines are drawn tangent to a given curve, the illusion of the
curve is produced. The curious student asks the natural question: what curve do we
see?

Students can answer this question with a little calculus, as described in [Boltyanskii,
1964, p. 52]. To see how, consider Figure 10.
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�

�

(t, 0)

(0, 10 − t)

(0, 0)
(10, 0)

Figure 10

Using a convenient coordinate system, we might describe this envelope by saying it
consists of lines in the first quadrant such that the x-intercept and y-intercept of each
line sum to 10. Thus, if (t, 0) is the x-intercept of such a line, then (0, 10 − t) is the
y-intercept. An equation for the line determined by these two points is

y = −10 − t

t
x + 10 − t.

In order to make the next step easier, this equation may be rewritten as

(10 − t)x + ty = t(10 − t). (3)

Each value of t produces a different line, so that t can be viewed as a parameter for
the family of lines.

Now differentiate (3) with respect to t, resulting in

−x + y = 10 − 2t.

Solve this equation for t: t = 1

2
(10 + x − y). Then substitute this expression for t

back into (3) and rearrange terms:

x2 − 2xy + y2 − 20x − 20y + 100 = 0.

Using the usual test for characterizing a conic section, we find that this curve is a
parabola.
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Figure 11

Even more dramatic is what happens when the lines in Figure 10 are extended be-
yond the coordinate axes, and values of t in (3) are allowed to be negative (as shown
in Figure 11).

With guidance, our students tackle problems involving a significant amount of alge-
bra. Using a ruler, pencil, and graph paper, or a program like Geometer’s Sketchpad,
they confirm that the result they derive using calculus corresponds to the envelope
they created.

CONCLUDING REMARKS

Creative Problem Solving in Mathematics is a stimulating, challenging course for
talented students. Its demands on the instructors are perhaps greater than for a typical
high school course; the teacher may need to learn new topics and devise ways to
present them at an appropriate level. In our case, the involvement of a university
faculty member (Vince Matsko) as mentor to a high school teacher (Todd Klauser)
was especially valuable. Currently, Matsko visits the CPSM classroom once or twice
weekly as time permits. It is important to consider either release time from the
usual course load or other form of compensation when involving a university faculty
mentor.
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Also crucial is the support of school administrators. The enthusiasm of the coordi-
nator for the mathematics curriculum in the public schools (Dr. Sandra Spalt-Fulte)
cannot be overstated. Without Spalt-Fulte’s vision, dedication, and ability to coordi-
nate diverse groups of stakeholders, the development of CPSM would not have been
possible.

It is our hope that these remarks might inspire other educators to take on the task of
introducing a course like Creative Problem Solving in Mathematics in their schools.
We would be happy to offer our assistance in such an endeavor.

REFERENCES

Boltyanskii, V. G. (1964). Envelopes. New York: The MacMillan Company.

Krause, E. F. (1986). Taxicab Geometry: An Adventure in Non-Euclidean Geometry.
New York: Dover Publications, Inc.

Matsko, V. J. (2005). Polyhedra and Geodesic Structures. Draft manuscript.

National Council of Teachers of Mathematics (1980). The Agenda for Action. 1906
Association Drive, Reston, VA.

National Council of Teachers of Mathematics (1989). Curriculum and Evaluation
Standards for School Mathematics. 1906 Association Drive, Reston, VA.

Usiskin, Z. (1990). The University of Chicago School Mathematics Project.

22


