The Greatest Integer (Floor) Function

Solutions to equations in one variable:

- 1. Since $\lfloor x^2 \rfloor$ and 2 are both integers, this means that x must also be an integer. Thus, $\lfloor x^2 \rfloor = x^2$, and so the equation may be rewritten as $x^2 x 2 = 0$. Thus, the solution set is $\{-1, 2\}$.
- 2. This problem is similar to the previous one. Since $\lfloor x \rfloor^2$ and 2 are integers, then x must also be an integer. Hence $\lfloor x \rfloor = x$, and we have the same solution set as before: $\{-1, 2\}$.
- 3. We must be careful in analyzing this solution. Since $\lfloor x \rfloor$ and 2 are integers, then so must be x^2 . If x is an integer, we get the usual solutions: x = -1 and x = 2.

But if x is not an integer, it must be of the form $\pm \sqrt{n}$, for some positive integer n, so that x^2 will be an integer. Note that if n = 5 so that $x = \pm \sqrt{5}$, we have

$$5 - \lfloor \sqrt{5} \rfloor - 2 = 1$$
 and $5 - \lfloor -\sqrt{5} \rfloor - 2 = 6$.

Increasing n only increases the "1" and the "6", so this means n < 5. It is an easy check to see that n = 3 yields the only possible additional solution: $x = \sqrt{3}$. Thus, the solution set is $\{-1, \sqrt{3}, 2\}$.

4. This is somewhat more complicated. Because of the $\lfloor x^2 \rfloor$ term, we examine intervals of the form $\lfloor \sqrt{n}, \sqrt{n+1} \rangle$ and $(-\sqrt{n+1}, -\sqrt{n}]$, since $\lfloor x^2 \rfloor$ is constant on such intervals. Realize again that n cannot be too large. A short table of calculations follows. Note that $\lfloor x^2 \rfloor - \lfloor x \rfloor - 2$ is 1 when $x \in (-\sqrt{2}, -1)$, but is 0 when x = -1; this accounts for the use of "or" in the table.

x interval	$\lfloor x^2 \rfloor - \lfloor x \rfloor - 2$	x interval	$\lfloor x^2 \rfloor - \lfloor x \rfloor - 2$
$(-\sqrt{2},-1]$	1 or 0	$\left[\sqrt{2},\sqrt{3}\right)$	-1
(-1, 0)	-1	$[\sqrt{3}, 2)$	0
[0,1)	-2	$[2,\sqrt{5})$	0
$[1,\sqrt{2})$	-2	$\left[\sqrt{5},\sqrt{6}\right)$	1

This gives a rather unusual solution set: $\{-1\} \cup [\sqrt{3}, \sqrt{5})$. This problem illustrates the fact that simple polynomial equations can become fairly involved once the floor function is introduced.

5. We may factor as follows:

$$\lfloor x \rfloor^2 - \lfloor x \rfloor - 2 = (\lfloor x \rfloor + 1)(\lfloor x \rfloor - 2) = 0,$$

so that $\lfloor x \rfloor = -1$ or $\lfloor x \rfloor = 2$. This gives the solution set $[-1, 0) \cup [2, 3)$.

Matsko