
- 1. Decide if the following are true or false. Circle one.
 - (a) TRUE FALSE $f: \mathbb{N} \to \mathbb{N}, f(x) = x^2$ is injective.
 - (b) TRUE FALSE $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$ is injective.
 - (c) TRUE FALSE $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is injective.
 - (d) TRUE FALSE $f: \mathbb{N} \to \mathbb{N}, f(x) = x + 1$ is surjective.
 - (e) TRUE FALSE $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = x + 1 is surjective.
 - (f) TRUE FALSE $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 is surjective.
- 2. If $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$, find $f^{-1}(9)$.
- 3. If $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^2$, find $f^{-1}(9)$.
- 4. Suppose you have sets X and Y such that |X| = 12 and |Y| = 42.
 - (a) What is the largest possible value for $|X \cap Y|$?
 - (b) What is the smallest possible value for $|X \cap Y|$?
 - (c) What are the possible values for $|X \cup Y|$?
- 5. Consider all six-letter words made from the letters $a,\,b,\,$ and $c.\,$
 - (a) How many words contain no repeated letters?
 - (b) How many words begin with a and end with b?
 - (c) How many words contain the string "cccc" somewhere within the word?

- 6. In how many ways is it possible to draw one card if that card is either a spade or a 4?
- 7. Let $A = \{2, 3, 5, 7, 11, 13\}.$
 - (a) How many subsets have cardinality 2?
 - (b) How many subset contain at least one odd number?
 - (c) How many subsets have the property that when you add the numbers in the subset, the sum is odd?

- 8. How many shortest paths start at (3,4) and
 - (a) end at (7,6)?
 - (b) end at (7,6) and pass through (5,5)?

