1. You are given a displacement graph below. Draw the corresponding velocity graph on the blank grid. Label axes carefully!

Write a brief sentence describing this journey.
2. Below is a graph of the function $f(x)=2 x^{2}-x^{3}$. Find an equation of the tangent line in the form $y=m x+b$ at $x=1$. You can use the graph to verify your answer, but you have to use calculus to find the equation. You may use the fact that $f^{\prime}(x)=4 x-3 x^{2}$.

3. Below is a graph of a velocity curve. Find an equation for the displacement curve.

4. Using the definition of the derivative, find $f^{\prime}(x)$ if $f(x)=2-x$.
5. Find the derivatives of the following functions.
(a) $h(x)=x \sqrt{x}$
(b) $h(x)=x \sin (x)$
(c) $h(x)=\frac{\cos (x)}{x^{2}}$
(d) $h(x)=\sin \left(x^{2}-1\right)$
6. Suppose $f(x)=\cos (x)-x^{5}$. Find $f^{\prime \prime}(x)$.
7. Below is a graph of $f(x)=x^{4}-2 x^{3}$. You are given that $f^{\prime}(x)=4 x^{3}-6 x^{2}$ and $f^{\prime \prime}(x)=12 x^{2}-12 x$. By making the appropriate sign chart, find all inflection points on this curve.

8. Fill in the blanks with either $f(x), f^{\prime}(x)$, or $f^{\prime \prime}(x)$.
(a) To make a sign chart to find inflection points, we use \qquad .
(b) To find the y-value for a local minimum, we use \qquad .
(c) To find where a function is increasing or decreasing, we use \qquad

