1. You are given a velocity graph below. Draw the corresponding displacement graph on the blank grid. Label axes carefully!

Write a brief sentence describing this journey.
2. Below is a graph of the function $f(x)=\frac{1}{3} x^{3}-x^{2}$. Find an equation of the tangent line in the form $y=m x+b$ at $x=3$. You can use the graph to verify your answer, but you have to use calculus to find the equation.

3. Find the derivatives of the following functions.
(a) $h(x)=-\frac{5}{x^{4}}$
(b) $h(x)=x^{2} \sin (x)$
(c) $h(x)=\frac{x^{2}}{\cos (x)}$
(d) $h(x)=\tan \left(1-x^{2}\right)$
4. Suppose a population of bacteria is modeled by $P(t)=4000 e^{0.02 t}$, where P is the population at time t, which is given in hours. At what rate is the population increasing at 7 hours?
5. (a) If $h(x)=\ln \left(x^{2}+\cos (x)\right)$, find $h^{\prime}(x)$.
(b) Find $\frac{d}{d x} 3 e^{\left(x^{2}+1\right)}$.
6. Find the local extrema for the function $f(x)=2 x^{2}-x^{4}$. You must show the appropriate calculus for full credit. No partial credit will be given for just looking at the graph.

7. Find the global extrema for the function $f(x)=\frac{1}{3} x^{3}-x^{2}$ on the closed interval $[0,5]$. You must show the appropriate calculus for full credit. No partial credit will be given for just looking at the graph.

8. Below is a graph of $y=\frac{x^{2}}{4-x^{2}}$. Find all asymptotes, sketch them on the graph, and label the behavior near the asymptotes using the appropriate limit notation.

9. (a) Find $\lim _{x \rightarrow-\infty} \frac{e^{x}}{x^{2}}$.
(b) Find $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$.
10. Given the curve described by the equation $e^{x y}=x^{3}+y^{3}$, find $\frac{d y}{d x}$.

