Optimization

- 2 In calculus, the term **optimization** involves finding mimima or maxima of a function. For
- example, when is the tide the highest? What price will maximize profit? How can you build
- a box using the least amount of wood? These are questions of optimization.
- 5 First, we need a little terminology. We've used the terms "minimum" and "maximum"
- 6 informally, but now we need to be a little more precise. Let's look at the graph in Figure 1.

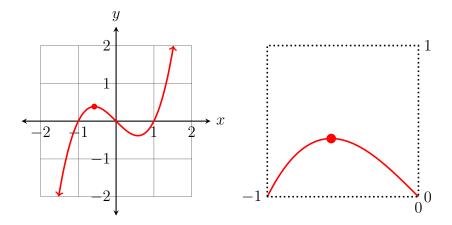


Figure 1: Local extrema: zooming in.

- Near -0.6, the graph has a **local maximum.** In other words, if we zoom in closer, as on
- 8 the right of Figure 1, it looks like the highest point on the graph is near x = -0.6. If we
- ⁹ zoom back out (the left graph of Figure 1), we see that this point is not the highest point
- on the entire graph. So it is not a global maximum the highest point on a graph.
- Near x = 0.6, we see that these is a **local minimum** if we zoom in, it will look like the
- graph has a lowest point at $x \approx 0.6$. But it is not a global minimum, since it is not the
- lowest point on the entire graph.
- We use the term **local extremum** to mean either a local minimum or maximum, and the
- term **global extremum** to mean either a global minimum or global maximum. Another
- common term for global extremum is absolute extremum. You will likely see both.

Looking for	think
Local extrema	Zooming in
Global extrema	Zooming out

Consider the graph of f(x) shown below. The arrows means that the graph keeps going up (it's actually a fourth-degree polynomial).

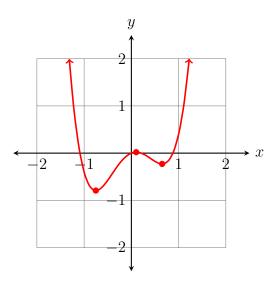


Figure 2: Local and global extrema.

Let's look at some features of this graph using our new terminology. At $x \approx -0.8$, we have a local minimum and a global minimum, as this point is the lowest on the entire graph. At $x \approx 0.7$, we have a local minimum – but it's not a global minimum because there are lower points on the graph. At $x \approx 0.1$, we have a local maximum – but it's not a global maximum since the graphs extends upward toward infinity. There is no global maximum on this graph.

It is worth pointing out that some graphs have *no* local or global extrema. Take the exponential function $f(x) = e^x$, for example. It is *always* increasing, so there can be no local or global maxima. There is no local or global minimum, either. You might be tempted to think that 0 is a global minimum. But it is not possible to solve $e^x = 0$, so there is *no* x-value that has a y-value of 0. So there are no minima, either.

We now look at how to find extrema of a function. We consider the function $f(x) = \sin(x)$ on the interval $[0, 4\pi]$. Note that when we restrict the domain, we are looking for global extrema over the interval $[0, 4\pi]$ only. This is very common in mathematics and science. Often, the horizontal axis represents time, and you only ever consider some finite period of time, not an infinite period.

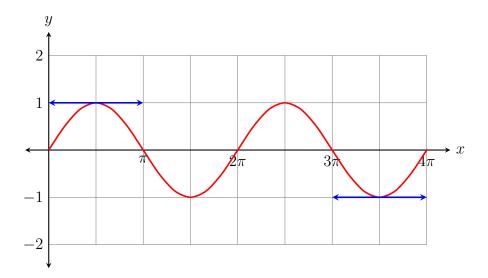


Figure 3: Graph of $f(x) = \sin(x)$ on the interval $[0, 4\pi]$.

We observed earlier that when we have a local extremum, we have a horizontal tangent, as seen in Figure 3. But a horizontal line has a slope of 0, and so 0 is the slope of the tangent line – which is given by the derivative. So our strategy should be to find out where f'(x) = 0.

But $f'(x) = \cos(x)$. From the unit circle, we know that solving $\cos(x) = 0$ on the interval $[0, 4\pi]$ gives four solutions:

$$x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}.$$

We know what type of extrema these are by looking at the graph. Can we do this without a graph? The key observation is that at a local maximum, the graph is concave down, and at a local minimum, the graph is concave up. We determine whether a graph is concave down or up by looking at f''(x). So

$$f'(x) = \cos(x)$$

$$f''(x) = -\sin(x)$$

$$f''\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1 < 0,$$

Matsko

so the graph must be concave down at $x = \frac{\pi}{2}$ since the second derivative is negative there, giving a local maximum. Similarly,

$$f''\left(\frac{3\pi}{2}\right) = -\sin\left(\frac{3\pi}{2}\right) = 1 > 0,$$

- so the graph must be concave up at $x = \frac{3\pi}{2}$ since the second derivative is positive there,
- giving a local minimum. There is also a local maximum at $x = \frac{5\pi}{2}$ and a local minimum at
- $x = \frac{7\pi}{2}$
- Are there any global extrema? It turns out there are two global extrema, $\left(\frac{\pi}{2},1\right)$ and
- $\left(\frac{5\pi}{2},1\right)$, since there are two values of x where f(x)=1 (again, restricting attention to the
- given domain). Likewise, there are two global minima at $x = \frac{3\pi}{2}$ and $x = \frac{7\pi}{2}$.
- Two important points to take away: there may be multiple global extrema, and we can use
- 47 the second derivative to help us determine if local extrema are minima or maxima.

In this example, we consider the function $f(x) = 1 - x^4$, shown in Figure 4.

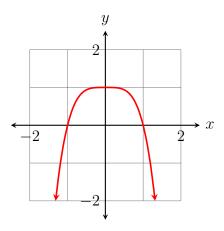


Figure 4: Graph of $f(x) = 1 - x^4$.

We can observe a local and global maximum at the point (0,1). Let's use calculus to verify this. Remember, there is a horizontal tangent there, we need to find out where f'(x) = 0.

$$f(x) = 1 - x^4$$
$$f'(x) = -4x^3$$
$$-4x^3 = 0$$
$$x = 0$$

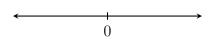
So, as expected, we have f'(0) = 0. Now let's try the second derivative:

$$f'(x) = -4x^3$$

$$f''(x) = -12x^2$$

$$f''(0) = 0$$

- So since f''(0) = 0, we can't tell whether the graph is concave up or concave down there there might even be an inflection point. So we need to use a sign chart (just like we did in
- the notes for Day 10). We'll use the three steps illustrated on p. 6 of that handout.
 - 1. We already know that solving f''(x) = 0 gives x = 0.
- ⁵⁴ 2. This gives the following number line:



55

3. Now choose one value from each interval. Easy values are x = -1 and x = 1.

$$f''(-1) = -12(-1)^{2}$$

$$= -12$$

$$< 0$$

$$f''(1) = -12(1^{2})$$

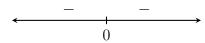
$$- 12$$

$$< 0.$$

This yields the following number line:

56

57



There is no inflection point since the concavity does not change – it's concave down on both sides of x = 0. This means that x = 0 is a local maximum, and in this case, also a global maximum.

This and the last example show you that to find local extrema, we set f'(x) = 0. To see if the function is concave up or down, use f''(x). This works *except* when f''(x) = 0, in which case you need to make a sign chart. Here's a summary.

To find local extrema of f(x):

- 1. Determine where f'(x) = 0.
- 2. Find f''(x) at these points.
 - (a) If f''(x) > 0, there is a local minimum.
 - (b) If f''(x) < 0, there is a local maximum.
 - (c) If f''(x) = 0, use a sign chart for f''(x).

65 Global Minima and Maxima

Not every function has local or global extrema. But in certain circumstances, we can know

that *global* extrema do in fact exist.

68

If a function is defined on a closed interval and is continuous, both a global minimum and a global maximum exist.

What is so important about a closed interval? Let's look at $f(x) = \frac{1}{x}$, shown in Figure 5.

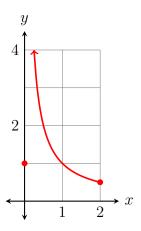


Figure 5: The importance of a closed interval.

We know what the graph looks like on (0,2]; there is a vertical asymptote. Now suppose we wanted to create a continuous function on [0,2] by defining the function to be some value at x=0. Can you see why this is impossible? No matter how we defined f(0) – for example, f(0)=1 – in order to be continuous at 0, the function would somehow have to turn around and come back down to the point (0,1). This cannot be done if there is a vertical asymptote at x=0.

Essentially, by making the assumption that the function is defined on a closed interval, it is not possible for there to be any vertical asymptotes. So there must be a lowest and highest point somewhere on the graph. A formal proof is a bit more complicated, but the graph in Figure 5 is meant to give you an idea of why this must be true.

So if we know that global extrema exist, how do we find them? There is a straightforward way using calculus. First, we'll give the method and then do some examples.

Suppose a function f(x) is defined on a closed interval [a,b] and is continuous. Then both a global minimum and a global maximum exist. To find them:

- 1. Determine where f'(x) = 0 or f'(x) does not exist,
- 2. Evaluate f(x) at these points and the endpoints a and b,
- 3. Select the lowest and highest values among these function values.

Example 4

- Let the function $f(x) = 3x x^3$ be defined on the closed interval $[-2, \sqrt{3}]$. Find the global
- extrema. The graph is shown in Figure 6.

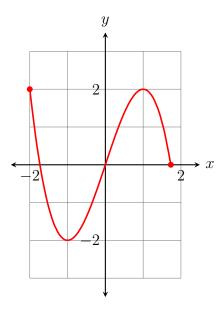


Figure 6: The graph of $f(x) = 3x - x^3$ on the closed interval $[-2, \sqrt{3}]$.

- Let's proceed with the steps one by one.
 - 1. Using the Power Rule, we get $f'(x) = 3 3x^2$. Since the derivative is a polynomial, it exists everywhere. To see where it's 0, we solve.

$$f'(x) = 0$$
$$3 - 3x^{2} = 0$$
$$3 = 3x^{2}$$
$$x^{2} = 1$$
$$x = -1, +1$$

2. Now evaluate at these points and the endpoints. Note that we want function values here, so we plug into f(x).

$$f(-1) = -2$$
, $f(1) = 2$, $f(-2) = 2$, $f(\sqrt{3}) = 0$.

3. Looking at these function values, -2 is the lowest and 2 is the highest. Thus, there is a global minimum at (-1, -2), and global maxima at (-2, 2) and (1, 2). Of course, these results make perfect sense by looking at the graph.

90 Example 5

It's important to note that you do *not* have to assume that the derivative exists everywhere in order to find global extrema. Let's take the example of f(x) = |x| on the closed interval [-2, 1], shown in Figure 7.

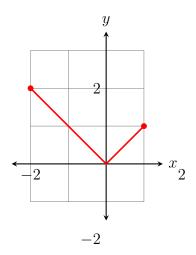


Figure 7: The graph of f(x) = |x| on the closed interval [-2, 1].

Now let's find the global extrema.

95

96

97

99

- 1. Since the pieces of this function are lines with slopes -1 and 1, the derivative is never equal to 0. But as we saw before, the function f(x) is not differentiable at x = 0. So we must include x = 0 as well as the endpoints.
- 2. Evaluating the function:

$$f(0) = 0$$
, $f(-2) = 2$, $f(1) = 1$.

3. The lowest function value is 0, so there is a global minimum at (0,0). The highest function value is 2, so there is a global maximum at (-2,2).

Let's look at another example where we need to look at where f'(x) doesn't exist. Consider $f(x) = \sqrt{x}$ on the closed interval [0, 4], shown in Figure 8.

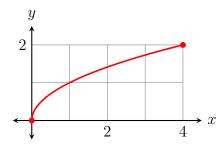


Figure 8: The graph of $f(x) = \sqrt{x}$ on the closed interval [0, 4].

103 Again, let's apply the steps.

104

105

106

107

108

109

110

1. Writing $f(x) = x^{1/2}$, we use the Power Rule to get

$$f'(x) = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}.$$

Note that the derivative can never be 0, because the numerator is always 1. But there is a place the derivative is undefined: x = 0. This is because you can't have a 0 in the denominator. What this means on the graph is that there is a vertical tangent at x = 0, and we know that vertical lines have an undefined slope.

2. Evaluating the function:

$$f(0) = 0, \quad f(4) = 2.$$

3. Looking for lowest and highest values, we have a global minmum at (0,0) and a global maximum at (4,2). It turns out that the only place f'(x) is undefined is at an endpoint, but that won't always be the case.

111 Homework

- 11. Find the local extrema for the function $f(x) = x 2\cos(x)$ on the interval $[0, 2\pi]$.

 Check that you're right by graphing.
- 2. Find the local extrema for the function $f(x) = x^5$ using the method in the notes. We can look at a graph and see that there are none, but use calculus to show it.
- 3. Find the global extrema for the function $f(x) = x^{2/3}$ on the closed interval [-4, 4].

 Graph this function on desmos (or your calculator) to verify your answer.
- 4. Find the global extrema for the function $f(x) = e^x x$ on the closed interval [-5, 2].
- 5. Find the global extrema for the function $f(x) = x \frac{1}{4} \ln x$ on the closed interval [1, 7].

16 August 2022 11 Matsko

120 Solutions

1. (a) We first find where f'(x) = 0 using the unit circle.

$$f(x) = x - 2\cos(x)$$

$$f'(x) = 1 + 2\sin(x) = 0$$

$$\sin(x) = -\frac{1}{2}$$

$$x = \frac{7\pi}{6}, \frac{11\pi}{6}$$

(b) Next, we evaluate f''(x) at these points.

$$f'(x) = 1 + 2\sin(x)$$

$$f''(x) = 2\cos(x)$$

Since $\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} < 0$, there is a local maximum at $x = \frac{7\pi}{6}$. Since $\cos\left(\frac{11\pi}{6}\right) = \frac{\sqrt{3}}{2} > 0$, there is a local minimum at $x = \frac{7\pi}{6}$.

2. (a) We first find where f'(x) = 0.

$$f(x) = x^5$$
$$f'(x) = 5x^4$$
$$5x^4 = 0$$
$$x = 0$$

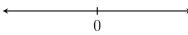
(b) Now check f''(x).

$$f'(x) = 5x4$$
$$f''(x) = 20x3$$
$$f''(0) = 0$$

Since f''(0) = 0, we need to make a sign chart.

i. We already know that solving f''(x) = 0 gives x = 0.

ii. This gives the following number line:



123

124

125

121

iii. Now choose one value from each interval. Easy values are x = -1 and x = 1.

$$f''(-1) = 20(-1)^{3}$$

$$= -20$$

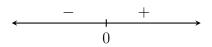
$$< 0$$

$$f''(1) = 20(1)^{3}$$

$$20$$

$$> 0.$$

This yields the following number line:



128 129

130

131

133

134

135

127

Thus, since the concavity changes at x = 0, there must be an inflection point there, and therefore no local extrema exist.

3. (a) First, we determine when f'(x) = 0 or when f'(x) does not exist.

$$f(x) = x^{2/3}$$
$$f'(x) = \frac{2}{3}x^{-1/3}$$
$$= \frac{2}{3\sqrt[3]{x}}$$

x = 0 since you can't have 0 on the denominator. (b) Now evaluate at this point and the endpoints.

2) 1.0% evaluate at this point and the enapelities

$$f(0) = 0$$
, $f(-4) = \sqrt[3]{16}$, $f(4) = \sqrt[3]{16}$.

f'(x) can never be 0 since the numerator cannot be 0. f'(x) is undefined when

- (c) Looking at largest and smallest values, we have a global minimum at (0,0) and global maxima at $(-4, \sqrt[3]{16})$ and $(4, \sqrt[3]{16})$.
- 4. (a) First, we determine when f'(x) = 0 or when f'(x) does not exist.

$$f(x) = e^{x} - x$$

$$f'(x) = e^{x} - 1 = 0$$

$$e^{x} = 1$$

$$x = 0$$

f'(x) always exists since e^x exists for every x.

(b) Now evaluate at this point and the endpoints.

$$f(0) = e^0 - 1 = 0$$
, $f(-5) = e^{-5} - (-5) \approx 4.99$, $f(2) = e^2 - 2 \approx 5.39$.

- (c) Looking at largest and smallest values, we have a global minimum at (0,0) and global maximum at $(2,e^2-2)$.
- 5. (a) First, we determine when f'(x) = 0 or when f'(x) does not exist.

$$f(x) = x - \frac{1}{4} \ln x$$

$$f'(x) = 1 - \frac{1}{4} \cdot \frac{1}{x} = 1 - \frac{1}{4x} = 0$$

$$\frac{1}{4x} = 1$$

$$4x = 1$$

$$x = \frac{1}{4}$$

However, we cannot consider this point since $\frac{1}{4}$ is *not* in the interval [1,7]. f'(x) always exists since the denominator cannot be 0 since we are looking at the closed interval [1,7].

(b) Now evaluate at the endpoints.

$$f(1) = 1 - \frac{1}{4} \ln 1 = 1, \quad f(7) = 7 - \frac{1}{4} \ln 7 \approx 6.51$$

(c) Looking at largest and smallest values, we have a global minimum at (1,1) and global maximum at $\left(7,7-\frac{1}{4}\ln7\right)$.

136

137

138

139

140

141